Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(24): 9213-9242, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37289974

RESUMO

Capsicum (chili pepper) is a widely popular and highly consumed fruit crop with beneficial secondary metabolites such as capsaicinoids, carotenoids, flavonoids, and polyphenols, among others. Interestingly, the secondary metabolite profile is a dynamic function of biosynthetic enzymes, regulatory transcription factors, developmental stage, abiotic and biotic environment, and extraction methods. We propose active manipulable genetic, environmental, and extraction controls for the modulation of quality and quantity of desired secondary metabolites in Capsicum species. Specific biosynthetic genes such as Pun (AT3) and AMT in the capsaicinoids pathway and PSY, LCY, and CCS in the carotenoid pathway can be genetically engineered for enhanced production of capsaicinoids and carotenoids, respectively. Generally, secondary metabolites increase with the ripening of the fruit; however, transcriptional regulators such as MYB, bHLH, and ERF control the extent of accumulation in specific tissues. The precise tuning of biotic and abiotic factors such as light, temperature, and chemical elicitors can maximize the accumulation and retention of secondary metabolites in pre- and postharvest settings. Finally, optimized extraction methods such as ultrasonication and supercritical fluid method can lead to a higher yield of secondary metabolites. Together, the integrated understanding of the genetic regulation of biosynthesis, elicitation treatments, and optimization of extraction methods can maximize the industrial production of secondary metabolites in Capsicum.


Assuntos
Capsicum , Capsicum/genética , Capsicum/metabolismo , Capsaicina , Sinais (Psicologia) , Regulação da Expressão Gênica , Frutas/química , Carotenoides/metabolismo
2.
J Proteome Res ; 22(3): 660-680, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36786770

RESUMO

Brassica crops have great economic value due to their rich nutritional content and are therefore grown worldwide as oilseeds, vegetables, and condiments. Deciphering the molecular mechanisms associated with the advantageous phenotype is the major objective of various Brassica improvement programs. As large technological advancements have been achieved in the past decade, the methods to understand molecular mechanisms underlying the traits of interest have also taken a sharp upturn in plant breeding practices. Proteomics has emerged as one of the preferred choices nowadays along with genomics and other molecular approaches, as proteins are the ultimate effector molecules responsible for phenotypic changes in living systems, and allow plants to resist variable environmental stresses. In the last two decades, rapid progress has been made in the field of proteomics research in Brassica crops, but a comprehensive review that collates the different studies is lacking. This review provides an inclusive summary of different proteomic studies undertaken in Brassica crops for cytoplasmic male sterility, oil content, and proteomics of floral organs and seeds, under different biotic and abiotic stresses including post-translational modifications of proteins. This comprehensive review will help in understanding the role of different proteins in controlling plant phenotypes, and provides information for initiating future studies on Brassica breeding and improvement programs.


Assuntos
Brassica , Brassica/genética , Proteômica/métodos , Proteoma/genética , Proteoma/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Desenvolvimento Vegetal , Estresse Fisiológico/genética
3.
Plant Physiol Biochem ; 196: 415-430, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36758289

RESUMO

The members of ZRT, IRT-like protein (ZIP) family are involved in the uptake and transportation of several metal ions. Here, we report a comprehensive identification of ZIP transporter genes from Capsicum annuum, C. chinense, and C. baccatum, and their expression analysis under Zn and Fe stress. Changes in root morphology and differential accumulation of several metabolites from sugars, amino acids, carboxylic acids, and fatty acids in root and leaf tissues of plants in the absence of Zn and Fe were observed. Further, metabolites such as L-aspartic acid, 2-ketoglutaric acids, ß-L-fucopyranose, quininic acid, chlorogenic acid, and aucubin were significantly upregulated in root and leaf tissues under Zn/Fe deprived conditions. qRT-PCR analysis of 17 CaZIPs in different tissues revealed tissue-specific expression of CaZIP1-2, CaZIP4-8, CaZIP13, and CaZIP16-17 under normal conditions. However, the absence of Zn and Fe significantly induced the expression of CaZIP4-5, CaZIP7-9, and CaZIP14 genes in root and leaf tissues. Additionally, in the absence of Fe, upregulation of CaZIP4-5 and CaZIP8 and increased uptake of mineral elements Cu, Zn, Mg, P, and S were observed in roots, suggesting their potential role in metal-ion uptake in Capsicum. The identified genes provide the basis for future studies of mineral uptake and their biofortification to increase the nutritional values in Capsicum.


Assuntos
Capsicum , Capsicum/genética , Capsicum/metabolismo , Zinco/metabolismo , Ferro/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteínas de Membrana Transportadoras/genética , Verduras , Regulação da Expressão Gênica de Plantas
4.
J Agric Food Chem ; 71(1): 65-95, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36584279

RESUMO

The fruits of the tomato crop (Solanum lycopersicum L.) are increasingly consumed by humans worldwide. Due to their rich nutritional quality, pharmaceutical properties, and flavor, tomato crops have gained a salient role as standout crops among other plants. Traditional breeding and applied functional research have made progress in varying tomato germplasms to subdue biotic and abiotic stresses. Proteomic investigations within a span of few decades have assisted in consolidating the functional genomics and transcriptomic research. However, due to the volatility and dynamicity of proteins in the regulation of various biosynthetic pathways, there is a need for continuing research in the field of proteomics to establish a network that could enable a more comprehensive understanding of tomato growth and development. With this view, we provide a comprehensive review of proteomic studies conducted on the tomato plant in past years, which will be useful for future breeders and researchers working to improve the tomato crop.


Assuntos
Proteômica , Solanum lycopersicum , Humanos , Solanum lycopersicum/genética , Frutas/metabolismo , Melhoramento Vegetal , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
5.
iScience ; 25(11): 105318, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36304106

RESUMO

Hybrid breeding is one of the efficacious methods of crop improvement. Here, we report our work towards understanding the molecular basis of F1 hybrid heterosis from Capsicum chinense and C. frutescens cross. Bisulfite sequencing identified a total of 70597 CG, 108797 CHG, and 38418 CHH differentially methylated regions (DMRs) across F1 hybrid and parents, and of these, 4891 DMRs showed higher methylation in F1 compared to the mid-parental methylation values (MPMV). Transcriptome analysis showed higher expression of 46-55% differentially expressed genes (DE-Gs) in the F1 hybrid. The qRT-PCR analysis of 24 DE-Gs with negative promoter methylation revealed 91.66% expression similarity with the transcriptome data. A few metabolites and 65-72% enriched genes in metabolite biosynthetic pathways showed overall increased expression in the F1 hybrid compared to parents. These findings, taken together, provided insights into the integrated role of DNA methylation, and genes and metabolites expression in the manifestation of heterosis in Capsicum.

6.
Funct Integr Genomics ; 22(6): 1189-1209, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36173582

RESUMO

To date, several transcriptomic studies during fruit development have been reported; however, no comprehensive integrated study on expression diversity, alternative splicing, and metabolomic profiling was reported in Capsicum. This study analyzed RNA-seq data and untargeted metabolomic profiling from early green (EG), mature green (MG), and breaker (Br) fruit stages from two Capsicum species, i.e., C. annuum (Cann) and C. frutescens (Cfrut) from Northeast India. A total of 117,416 and 96,802 alternatively spliced events (AltSpli-events) were identified from Cann and Cfrut, respectively. Among AltSpli-events, intron retention (IR; 32.2% Cann and 25.75% Cfrut) followed by alternative acceptor (AA; 15.4% Cann and 18.9% Cfrut) were the most abundant in Capsicum. Around 7600 genes expressed in at least one fruit stage of Cann and Cfrut were AltSpli. The study identified spliced variants of genes including transcription factors (TFs) potentially involved in fruit development/ripening (Aux/IAA 16-like, ETR, SGR1, ARF, CaGLK2, ETR, CaAGL1, MADS-RIN, FUL1, SEPALLATA1), carotenoid (PDS, CA1, CCD4, NCED3, xanthoxin dehydrogenase, CaERF82, CabHLH100, CaMYB3R-1, SGR1, CaWRKY28, CaWRKY48, CaWRKY54), and capsaicinoids or flavonoid biosynthesis (CaMYB48, CaWRKY51), which were significantly differentially spliced (DS) between consecutive Capsicum fruit stages. Also, this study observed that differentially expressed isoforms (DEiso) from 38 genes with differentially spliced events (DSE) were significantly enriched in various metabolic pathways such as starch and sucrose metabolism, amino acid metabolism, cysteine cutin suberin and wax biosynthesis, and carotenoid biosynthesis. Furthermore, the metabolomic profiling revealed that metabolites from aforementioned pathways such as carbohydrates (mainly sugars such as D-fructose, D-galactose, maltose, and sucrose), organic acids (carboxylic acids), and peptide groups significantly altered during fruit development. Taken together, our findings could help in alternative splicing-based targeted studies of candidate genes involved in fruit development and ripening in Capsicum crop.


Assuntos
Capsicum , Capsicum/genética , Capsicum/química , Capsicum/metabolismo , Frutas/genética , Carotenoides/metabolismo , Transcriptoma , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas
7.
J Proteomics ; 261: 104578, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35398364

RESUMO

Capsicum belonging to the family Solanaceae is one of the most widely consumed crops in the world as a vegetable, spice and a raw salad and is distinctly valuable for its spicy pungent flavour. Proteomic investigation of crop plants is an essential step towards deciphering the functional basis of traits in an organism and to deepen our understanding on the regulation of various developmental patterns, biotic, and abiotic stress response and tolerance mechanisms. The differential proteome expression profiling of tissues during different developmental stages and under different conditions may indicate the specific proteome dynamics involved in the developmental programs and under stress conditions. Although substantial progress in proteomics of other Solanaceae plants has been made in the past two decades, a comprehensive review on Capsicum proteomics is still lacking. This review provides updated information on the advancement of Capsicum proteomic study in cytoplasmic male sterility, during fruit development and ripening, and under different biotic and abiotic stresses. Although limited information is available on the post translational protein modifications in Capsicum, a brief outline is given at the end detailing various post translational modifications. This proteomic update on Capsicum will be useful for future studies aimed at Capsicum improvement programs.


Assuntos
Capsicum , Solanaceae , Capsicum/fisiologia , Proteoma/metabolismo , Proteômica , Estresse Fisiológico , Verduras
8.
Heliyon ; 8(1): e08669, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35028454

RESUMO

The Portulaca oleracea L. commonly known as purslane is distributed all over the world and easily grows in diverse soil and climatic conditions. It has been traditionally used as a nutritious and ethnomedicinal food across the globe. Various studies have shown that the plant is a rich source of various important phytochemicals such as flavonoids, alkaloids, terpenoids, proteins, carbohydrates, and vitamins such as A, C, E, and B, carotenoids and minerals such as phosphorus, calcium, magnesium and zinc. It is particularly very important because of the presence of a very high concentration of omega-3- fatty acids especially α-linolenic acid, gamma-linolenic acid and linoleic acid, which are not generally synthesized in terrestrial plants. Various parts of purslane are known for ethnomedicinal and pharmacological uses because of its anti-inflammatory, antidiabetic, skeletal muscle relaxant, antitumor, hepatoprotective, anticancer, antioxidant, anti-insomnia, analgesic, gastroprotective, neuroprotective, wound healing and antiseptic activities. Due to multiple benefits of purslane, it has become an important wonder crop and various scientists across the globe have shown much interest in it as a healthy food for the future. In this review, we provide an update on the phytochemical and nutritional composition of purslane, its usage as nutritional and an ethnomedicinal plant across the world. We further provide a detailed account on ethnopharmacological studies that have proved the ethnomedicinal properties of purslane.

9.
Front Plant Sci ; 12: 721265, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721453

RESUMO

Myeloblastosis (MYB) genes are important transcriptional regulators of plant growth, development, and secondary metabolic biosynthesis pathways, such as capsaicinoid biosynthesis in Capsicum. Although MYB genes have been identified in Capsicum annuum, no comprehensive study has been conducted on other Capsicum species. We identified a total of 251 and 240 MYB encoding genes in Capsicum chinense MYBs (CcMYBs) and Capsicum baccatum MYBs (CbMYBs). The observation of twenty tandem and 41 segmental duplication events indicated expansion of the MYB gene family in the C. chinense genome. Five CcMYB genes, i.e., CcMYB101, CcMYB46, CcMYB6, CcPHR8, and CcRVE5, and two CaMYBs, i.e., CaMYB3 and CaHHO1, were found within the previously reported capsaicinoid biosynthesis quantitative trait loci. Based on phylogenetic analysis with tomato MYB proteins, the Capsicum MYBs were classified into 24 subgroups supported by conserved amino acid motifs and gene structures. Also, a total of 241 CcMYBs were homologous with 225 C. annuum, 213 C. baccatum, 125 potato, 79 tomato, and 23 Arabidopsis MYBs. Synteny analysis showed that all 251 CcMYBs were collinear with C. annuum, C. baccatum, tomato, potato, and Arabidopsis MYBs spanning over 717 conserved syntenic segments. Using transcriptome data from three fruit developmental stages, a total of 54 CcMYBs and 81 CaMYBs showed significant differential expression patterns. Furthermore, the expression of 24 CcMYBs from the transcriptome data was validated by quantitative real-time (qRT) PCR analysis. Eight out of the 24 CcMYBs validated by the qRT-PCR were highly expressed in fiery hot C. chinense than in the lowly pungent C. annuum. Furthermore, the co-expression analysis revealed several MYB genes clustered with genes from the capsaicinoid, anthocyanin, phenylpropanoid, carotenoid, and flavonoids biosynthesis pathways, and related to determining fruit shape and size. The homology modeling of 126 R2R3 CcMYBs showed high similarity with that of the Arabidopsis R2R3 MYB domain template, suggesting their potential functional similarity at the proteome level. Furthermore, we have identified simple sequence repeat (SSR) motifs in the CcMYB genes, which could be used in Capsicum breeding programs. The functional roles of the identified CcMYBs could be studied further so that they can be manipulated for Capsicum trait improvement.

10.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502341

RESUMO

Clubroot caused by Plasmodiophora brassicae is a severe disease of cruciferous crops that decreases crop quality and productivity. Several clubroot resistance-related quantitative trait loci and candidate genes have been identified. However, the underlying regulatory mechanism, the interrelationships among genes, and how genes are regulated remain unexplored. MicroRNAs (miRNAs) are attracting attention as regulators of gene expression, including during biotic stress responses. The main objective of this study was to understand how miRNAs regulate clubroot resistance-related genes in P. brassicae-infected Brassica rapa. Two Brassica miRNAs, Bra-miR1885a and Bra-miR1885b, were revealed to target TIR-NBS genes. In non-infected plants, both miRNAs were expressed at low levels to maintain the balance between plant development and basal immunity. However, their expression levels increased in P. brassicae-infected plants. Both miRNAs down-regulated the expression of the TIR-NBS genes Bra019412 and Bra019410, which are located at a clubroot resistance-related quantitative trait locus. The Bra-miR1885-mediated down-regulation of both genes was detected for up to 15 days post-inoculation in the clubroot-resistant line CR Shinki and in the clubroot-susceptible line 94SK. A qRT-PCR analysis revealed Bra019412 expression was negatively regulated by miR1885. Both Bra019412 and Bra019410 were more highly expressed in CR Shinki than in 94SK; the same expression pattern was detected in multiple clubroot-resistant and clubroot-susceptible inbred lines. A 5' rapid amplification of cDNA ends analysis confirmed the cleavage of Bra019412 by Bra-miR1885b. Thus, miR1885s potentially regulate TIR-NBS gene expression during P. brassicae infections of B. rapa.


Assuntos
Brassica rapa/imunologia , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Plasmodioforídeos/fisiologia , Brassica rapa/genética , Brassica rapa/parasitologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética
11.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360856

RESUMO

Indigenous communities across the globe, especially in rural areas, consume locally available plants known as Traditional Food Plants (TFPs) for their nutritional and health-related needs. Recent research shows that many TFPs are highly nutritious as they contain health beneficial metabolites, vitamins, mineral elements and other nutrients. Excessive reliance on the mainstream staple crops has its own disadvantages. Traditional food plants are nowadays considered important crops of the future and can act as supplementary foods for the burgeoning global population. They can also act as emergency foods in situations such as COVID-19 and in times of other pandemics. The current situation necessitates locally available alternative nutritious TFPs for sustainable food production. To increase the cultivation or improve the traits in TFPs, it is essential to understand the molecular basis of the genes that regulate some important traits such as nutritional components and resilience to biotic and abiotic stresses. The integrated use of modern omics and gene editing technologies provide great opportunities to better understand the genetic and molecular basis of superior nutrient content, climate-resilient traits and adaptation to local agroclimatic zones. Recently, realizing the importance and benefits of TFPs, scientists have shown interest in the prospection and sequencing of TFPs for their improvements, cultivation and mainstreaming. Integrated omics such as genomics, transcriptomics, proteomics, metabolomics and ionomics are successfully used in plants and have provided a comprehensive understanding of gene-protein-metabolite networks. Combined use of omics and editing tools has led to successful editing of beneficial traits in several TFPs. This suggests that there is ample scope for improvement of TFPs for sustainable food production. In this article, we highlight the importance, scope and progress towards improvement of TFPs for valuable traits by integrated use of omics and gene editing techniques.


Assuntos
Segurança Alimentar/métodos , Plantas Comestíveis/genética , Plantas Comestíveis/metabolismo , Edição de Genes , Genômica/métodos , Humanos , Metabolômica , Plantas Comestíveis/química , Proteômica
12.
Sci Rep ; 11(1): 4129, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602957

RESUMO

Piriformospora indica, a root endophytic fungus, augments plant nutrition and productivity as well as protects plants against pathogens and abiotic stresses. High salinity is a major problem faced by plants as well as by microbes. Until now, the precise mechanism of salt stress tolerance in P. indica has remained elusive. In this study, the transcriptomes of control and salt-treated (0.5 M NaCl) P. indica were sequenced via the RNA-seq approach. A total of 30,567 transcripts and 15,410 unigenes for P. indica were obtained from 7.3 Gb clean reads. Overall 661 differentially expressed genes (DEGs) between control and treated samples were retrieved. Gene ontology (GO) and EuKaryotic Orthologous Groups (KOG) enrichments revealed that DEGs were specifically involved in metabolic and molecular processes, such as "response to salt stress", "oxidoreductase activity", "ADP binding", "translation, ribosomal structure and biogenesis", "cytoskeleton", and others. The unigenes involved in "cell wall integrity", "sterol biosynthesis", and "oxidative stress" such as Rho-type GTPase, hydroxymethylglutaryl-CoA synthase, and thioredoxin peroxidase were up-regulated in P. indica subjected to salt stress. The salt-responsive DEGs have shown that they might have a potential role in salt stress regulation. Our study on the salt-responsive DEGs established a foundation for the elucidation of molecular mechanisms related to P. indica stress adaptation and a future reference for comparative functional genomics studies of biotechnologically important fungal species.


Assuntos
Basidiomycota/genética , Estresse Salino/genética , Transcrição Gênica/genética , Perfilação da Expressão Gênica/métodos , RNA-Seq/métodos , Salinidade , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Transcriptoma/genética
13.
Genomics ; 112(5): 3342-3353, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32561348

RESUMO

Single-base cytosine methylation analysis across fruits of Capsicum annuum, C. chinense and C. frutescens showed global average methylation ranging from 82.8-89.1%, 77.6-83.9%, and 22.4-25% at CG, CHG and CHH contexts, respectively. High gene-body methylation at CG and CHG was observed across Capsicum species. The C. annuum showed the highest proportion (>80%) of mCs at different genomic regions compared to C. chinense and C. frutescens. Cytosine methylation for transposable-elements were lower in C. frutescens compared to C. annuum and C. chinense. A total of 510,165 CG, 583112 CHG and 277,897 CHH DMRs were identified across three Capsicum species. The differentially methylated regions (DMRs) distribution analysis revealed C. frutescens as more hypo-methylated compared to C. annuum and C. chinense, and also the presence of more intergenic DMRs in Capsicum genome. At CG and CHG context, gene expression and promoter methylation showed inverse correlations. Furthermore, the observed correlation between methylation and expression of genes suggested the potential role of methylation in Capsicum fruit development/ripening.


Assuntos
Capsicum/genética , Citosina/metabolismo , Metilação de DNA , Frutas/genética , Capsicum/metabolismo , Frutas/metabolismo , Expressão Gênica , Ontologia Genética , Genoma de Planta , Sequências Repetitivas Dispersas , Reação em Cadeia da Polimerase em Tempo Real , Sequenciamento do Exoma
14.
Drug Chem Toxicol ; 43(2): 182-191, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30033771

RESUMO

Apart from using traditionally in culinary preparations, chili peppers are also important constituents of herbal medicines. Although the bioactive components are studied mostly in the fruits of Capsicum annuum, no such study reports till date is available for Ghost chili (C. chinense) from North East India. Therefore, the aim of this study was to carry out an analysis of the bioactive constituents in the naturally occurring hottest chili Ghost chili (C. chinense), and evaluate its antioxidant, pro/anti-genotoxic, and apoptotic effects in in vitro and in vivo models. Three different antioxidant assays showed that lower doses of Ghost chili extract showed higher DNA protective and antioxidant activities. Furthermore, the administration for 7 alternate days into 6 week old Swiss albino mice showed that the lower doses (50 and 100 mg/kg bw) reduced DMBA induced genotoxicity beside significantly enhancing the activities of hepatic antioxidant enzymes, while higher dose (200 mg/kg bw) induced genotoxic effect in bone marrow cells. The administration of higher dose (200 mg/kg bw) also induced apoptosis and upregulation of Bax (pro) and downregulation of Bcl-2 (anti) apoptotic genes. Dose dependent increase of apoptosis was also observed in Hep G2 and Hep 3B liver cancer cell lines. Our findings in the present study suggest that low doses of C. chinense can exert cancer chemopreventive effects. The induction of apoptosis in both cancer cell lines and mouse bone marrow cells, and up-regulation of proapoptotic genes suggests that the higher dose of C. chinense can be used for targeted cancer therapy.


Assuntos
Antioxidantes/administração & dosagem , Apoptose/efeitos dos fármacos , Capsicum/química , Extratos Vegetais/administração & dosagem , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/toxicidade , Antioxidantes/farmacologia , Antioxidantes/toxicidade , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Testes de Mutagenicidade , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade
15.
Genomics ; 112(2): 1554-1564, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31505243

RESUMO

Plant growth and development are largely regulated by non-coding RNAs (ncRNA); thus ncRNA based markers would be rewarding in molecular breeding. In the present study, for the first time we developed total 623 ncRNA based SSRs including 119 microRNASSRs (miRNASSRs) and 504 long non-coding RNASSRs (lncRNASSRs) distributed across 12 Capsicum chromosomes. Out of 623 ncRNASSRs, 120 (including 60 each miRNASSRs and lncRNASSRs) were used for genotyping of 96 Capsicum accessions belonging to C. annuum, C. chinense and C. frutescens; and 75% SSRs were polymorphic. Model-based and distance-based cluster analyses identified three species specific clusters, i.e. cluster-I (C. annuum), cluster-II (C. frutescens) and cluster-III (C. chinense); therefore, these SSRs may have a potential role to play in interspecific Capsicum breeding. Tissue specific expression of SSR containing ncRNAs and versatile functions of their targets suggested the usefulness of SSRs for mapping of genes/QTLs and breeding of wide range of traits in Capsicum.


Assuntos
Capsicum/genética , MicroRNAs/genética , Repetições de Microssatélites , RNA Longo não Codificante/genética , Cromossomos de Plantas/genética , Genoma de Planta , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/normas , Técnicas de Genotipagem/métodos , Técnicas de Genotipagem/normas , Melhoramento Vegetal/métodos , Melhoramento Vegetal/normas , Locos de Características Quantitativas
16.
Sci Rep ; 9(1): 5020, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30903013

RESUMO

Foxtail millet (Setaria italica), the second largest cultivated millet crop after pearl millet, is utilized for food and forage globally. Further, it is also considered as a model crop for studying agronomic, nutritional and biofuel traits. In the present study, a genome-wide association study (GWAS) was performed for ten important agronomic traits in 142 foxtail millet core eco-geographically diverse genotypes using 10 K SNPs developed through GBS-ddRAD approach. Number of SNPs on individual chromosome ranged from 844 (chromosome 5) to 2153 (chromosome 8) with an average SNP frequency of 25.9 per Mb. The pairwise linkage disequilibrium (LD) estimated using the squared-allele frequency correlations was found to decay rapidly with the genetic distance of 177 Kb. However, for individual chromosome, LD decay distance ranged from 76 Kb (chromosome 6) to 357 Kb (chromosome 4). GWAS identified 81 MTAs (marker-trait associations) for ten traits across the genome. High confidence MTAs for three important agronomic traits including FLW (flag leaf width), GY (grain yield) and TGW (thousand-grain weight) were identified. Significant pyramiding effect of identified MTAs further supplemented its importance in breeding programs. Desirable alleles and superior genotypes identified in the present study may prove valuable for foxtail millet improvement through marker-assisted selection.


Assuntos
Genoma de Planta/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Análise de Sequência de DNA/métodos , Setaria (Planta)/genética , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Frequência do Gene , Genótipo , Desequilíbrio de Ligação , Fenótipo , Filogenia , Setaria (Planta)/classificação
17.
Genomics ; 111(6): 1913-1922, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30615924

RESUMO

The molecular mechanism of the underlying genes involved in the process of fruit ripening in Capsicum (family Solanaceae) is not clearly known. In the present study, we identified orthologs of 32 fruit development/ripening genes of tomato in Capsicum, and validated their expression in fruit development stages in C. annuum, C. frutescens, and C. chinense. In silico expression analysis using transcriptome data identified a total of 12 out of 32 genes showing differential expression during different stages of fruit development in Capsicum. Real time expression identified gene LOC107847473 (ortholog of MADS-RIN) had substantially higher expression (>500 folds) in breaker and mature fruits, which suggested the non-climacteric ripening behaviour of Capsicum. However, differential expression of Ehtylene receptor 2-like (LOC107873245) gene during fruit maturity supported the climacteric behaviour of only C. frutescens (hot pepper). Furthermore, development of 49 gene based simple sequence repeat (SSR) markers would help in selection of identified genes in Capsicum breeding.


Assuntos
Capsicum/fisiologia , Frutas/fisiologia , Genes de Plantas , Marcadores Genéticos , Simulação por Computador , Frutas/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Genoma de Planta , Solanum lycopersicum/genética , Repetições de Microssatélites , Proteínas de Plantas/genética , Reprodutibilidade dos Testes
18.
Theor Appl Genet ; 130(8): 1617-1634, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28577084

RESUMO

KEY MESSAGE: QTLs and candidate gene markers associated with leaf morphological and color traits were identified in two immortalized populations of Brassica rapa, which will provide genetic information for marker-assisted breeding. Brassica rapa is an important leafy vegetable consumed worldwide and morphology is a key character for its breeding. To enhance genetic control, quantitative trait loci (QTLs) for leaf color and plant architecture were identified using two immortalized populations with replications of 2 and 4 years. Overall, 158 and 80 QTLs associated with 23 and 14 traits were detected in the DH and RIL populations, respectively. Among them, 23 common robust-QTLs belonging to 12 traits were detected in common loci over the replications. Through comparative analysis, five crucifer genetic blocks corresponding to morphology trait (R, J&U, F and E) and color trait (F, E) were identified in three major linkage groups (A2, A3 and A7). These might be key conserved genomic regions involved with the respective traits. Through synteny analysis with Arabidopsis, 64 candidate genes involved in chlorophyll biosynthesis, cell proliferation and elongation were co-localized within QTL intervals. Among them, SCO3, ABI3, FLU, HCF153, HEMB1, CAB3 were mapped within QTLs for leaf color; and CYCD3;1, CYCB2;4, AN3, ULT1 and ANT were co-localized in QTL regions for leaf size. These robust QTLs and their candidate genes provide useful information for further research into leaf architecture with crop breeding.


Assuntos
Brassica rapa/genética , Pigmentação , Folhas de Planta/anatomia & histologia , Locos de Características Quantitativas , Mapeamento Cromossômico , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Fenótipo , Melhoramento Vegetal
19.
PLoS One ; 11(12): e0167791, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936081

RESUMO

Bhut jolokia, commonly known as Ghost chili, a native Capsicum species found in North East India was recorded as the naturally occurring hottest chili in the world by the Guinness Book of World Records in 2006. Although few studies have reported variation in pungency content of this particular species, no study till date has reported detailed expression analysis of candidate genes involved in capsaicinoids (pungency) biosynthesis pathway and other fruit metabolites. Therefore, the present study was designed to evaluate the diversity of fruit morphology, fruiting habit, capsaicinoids and other metabolite contents in 136 different genotypes mainly collected from North East India. Significant intra and inter-specific variations for fruit morphological traits, fruiting habits and 65 fruit metabolites were observed in the collected Capsicum germplasm belonging to three Capsicum species i.e., Capsicum chinense (Bhut jolokia, 63 accessions), C. frutescens (17 accessions) and C. annuum (56 accessions). The pungency level, measured in Scoville Heat Unit (SHU) and antioxidant activity measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay showed maximum levels in C. chinense accessions followed by C. frutescens accessions, while C. annuum accessions showed the lowest value for both the traits. The number of different fruit metabolites detected did not vary significantly among the different species but the metabolite such as benzoic acid hydroxyl esters identified in large percentage in majority of C. annuum genotypes was totally absent in the C. chinense genotypes and sparingly present in few genotypes of C. frutescens. Significant correlations were observed between fruit metabolites capsaicin, dihydrocapsaicin, hexadecanoic acid, cyclopentane, α-tocopherol and antioxidant activity. Furthermore, comparative expression analysis (through qRT-PCR) of candidate genes involved in capsaicinoid biosynthesis pathway revealed many fold higher expression of majority of the genes in C. chinense compared to C. frutescens and C. annuum suggesting that the possible reason for extremely high pungency might be due to the higher level of candidate gene(s) expression although nucleotide variation in pungency related genes may also be involved in imparting variations in level of pungency.


Assuntos
Capsaicina/metabolismo , Capsicum/metabolismo , Frutas/metabolismo , Antioxidantes/análise , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Capsaicina/análogos & derivados , Capsaicina/análise , Capsicum/anatomia & histologia , Capsicum/química , Capsicum/genética , Frutas/anatomia & histologia , Frutas/química , Frutas/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Índia
20.
Biochem Biophys Res Commun ; 469(2): 306-12, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26631965

RESUMO

The YacK gene from Yersinia enterocolitica strain 7, cloned in pET28a vector and expressed in Escherichia coli BL21 (DE3), showed laccase activity when oxidized with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and guaiacol. The recombinant laccase protein was purified and characterized biochemically with a molecular mass of ≈58 KDa on SDS-PAGE and showed positive zymogram with ABTS. The protein was highly robust with optimum pH 9.0 and stable at 70 °C upto 12 h with residual activity of 70%. Kinetic constants, Km values, for ABTS and guaiacol were 675 µM and 2070 µM, respectively, with corresponding Vmax values of 0.125 µmol/ml/min and 6500 µmol/ml/min. It also possess antioxidative property against BSA and Cu(2+)/H2O2 model system. Constant pH MD simulation studies at different protonation states of the system showed ABTS to be most stable at acidic pH, whereas, diclofenac at neutral pH. Interestingly, aspirin drifted out of the binding pocket at acidic and neutral pH, but showed stable binding at alkaline pH. The biotransformation of diclofenac and aspirin by laccase also corroborated the in silico results. This is the first report on biotransformation of non-steroidal anti-inflammatory drugs (NSAIDs) using recombinant laccase from gut bacteria, supported by in silico simulation studies.


Assuntos
Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Lacase/química , Lacase/metabolismo , Simulação de Acoplamento Molecular , Yersinia enterocolitica/enzimologia , Sítios de Ligação , Biotransformação , Simulação por Computador , Ativação Enzimática , Estabilidade Enzimática , Escherichia coli/fisiologia , Lacase/genética , Modelos Químicos , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/ultraestrutura , Yersinia enterocolitica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA